Sports May Drive Brain Stimulation to the Masses

OK – yes this is a long post – but if you are an elite athlete, coach, or a just interested in sports, stay tuned….

(The $99 plus shipping Go Flow Pro – with it’s included headband allows easy and secure electrode placement. So what does this have to do with sports?)


The potential benefits of tDCS* and other brain stimulation technologies have been receiving online and media coverage for a few years now. One would have thought the great things tDCS can do for depression, chronic pain, learning, memory, athletic ability, etc. would be plenty to make it top news everywhere. But alas that is not the case. The Malcolm Gladwell “Tipping Point” has not been reached! tDCS is new, scary (electricity through the brain), and still needs more research and more concrete treatment procedures to tip – but it is rapidly getting there.

The “tipping point” for tDCS and brain stimulation may come via – of all places – elite athletics.

Sports Goes for Brain Stimulation

In recent months the professional and collegiate sports world has started to adopt tDCS (and other brain stimulation technologies) in rather spectacular fashion. One has only to watch the video(s) at,, or read recent articles in sports publications, including Sports Illustrated, to be awed by the results being claimed.

Now that certain elite athletes and their coaches have reported very interesting performance gains every competitive athlete is going to get curious about getting the same edge as word continues to spread. How do I know this? Look at all the demand for – and ruined careers caused by performance enhancing drugs in athletics! If an elite athlete can improve their performance, legally, by 3% or more by using a 9 volt battery don’t you think they will want to try it? What about coaches, fans, and investors – will they encourage athletes to try tDCS? In the years just ahead, you and I will witness a number of athletes (pro and amateur – and their teams) who will compete and succeed  – perhaps setting new records in their chosen sport – by way of brain stimulation.

No you say? If a pro athlete or team is willing to spend millions of dollars on tiny enhancements to shoes or swimsuits just to get a tenth of a second gain, how hard will it be for them to spend $99 or $599 for a brain stimulation device that can potentially bring about a comparatively large performance improvement? They will do it in a heartbeat.

Oh – BTW, you can guess that all of the not-so-elite weekend hacks will want to try brain stimulation too.  Think of all the sports that could be affected: golf, baseball, football, basketball, hockey, track and field, etc. Athletes by the millions! Brain stimulation can potentially help many of them!

Brain stim device manufactures ALERT: a tidal wave of demand is about to come your way! We need good products with good research behind them – and well written end-user guides!

Regulating Performance Enhancing Brain Stimulation

Sports oversight organizations that want to regulate this new form of performance enhancement will find it difficult to impossible. The fact that a small amount of current has passed through the brain of athletes will be impossible to detect – body chemistry will be no different than that of other athletes who have not engaged in electrical brain stimulation.

I’m curious if this summer’s Olympic games will include any athletes using brain stimulation to enhance performance? I don’t – know but would not be surprised. If you see any reports of such, please pass them along to me.

Brain Stimulation for Athletes – A Beginners Guide

While tDCS has been around for many years, it has been used little in the world of sports. There are a few vendors who have created related products (including,, and But it is the pioneering work by Halo Neuroscience that seems to have really captured the imagination and curiosity of the elites. Halo sells a very interesting Bluetooth headset that includes built-in electrodes positioned to allow stimulation of the motor cortex.

(Halo Neuroscience Bluetooth headset showing their unique tDCS electrodes.)

(Motor cortex diagram. From

There are literally dozens of completed studies mentioned on that show how a tiny electric current can enhance or attenuate motor cortex activity and related muscle activation.  Until recently, the tDCS equipment required was large, fragile, and expensive.  But Halo, Thync,, and others have changed that.

21 electrodes of International 10-20 system for EEG.svg
(The 10-20 EEG System diagram. From

Exactly where to place electrodes, how much current to use, and for how long, for athletic enhancement is an area still open to much research. Halo Neuroscience, in one of their published studies, mentions placing the tDCS anode (plus) over C4 and the cathode over C3, and stimulating using 1.4 mA for 25 minutes. Other studies (on for example) mention similar electrode locations or placing the anode at Cz and the cathode on the shoulder with current levels up to 2 mA and times between 20 and 30 minutes.

While the Halo headset is an innovative tool for bringing about athletic improvement, you can use any tDCS device to experiment with simulating the motor cortex. But lets be clear – it is experimenting. There is no FDA or other regulating body I’m aware of that watches over this emerging area of technology.  If you try it, you are truly on the leading edge. Proceed with much caution. Do your homework!

Using a tDCS Device for Motor Cortex Stimulation

Here are a couple of examples of using a commercially available tDCS device to stimulate the motor cortex and thus increase neuroplasticity. Done correctly and with enough repetition an athlete may see improvement in the their particular areas of concentration.

( produces the very tiny Go Flow Pro tDCS device that snaps on the top of a 9 volt battery.  I think it is ideal for experimenting with athletic enhancement. I added my own arm-band to hold the tDCS device and battery while in use. It will easily fit in a pocket, too.)

(Over the years all kinds of things have been used to hold electrodes in place – including head-bands, sticky gel, baseball caps, and yes – headphones! Here is an example of headphones with Caputron 2×2 electrodes attached. I’ve found that “Shoe Goo” glue can be used to stick just about anything to anything – and it works well for this application.)

(I like the Caputron 2x2s because they are very flexible and conform to the head very well. I show them connected to a Go Flow Pro, but you can use any tDCS device with them – including the BrainStimulator.)

(The BrainStimulator Travel Model is another small tDCS device that seems appropriate for athletic activity. I’ve previously reviewed this device on my blog.)

tDCS Session Steps

Here are the simple steps I follow when using tDCS for athletic improvement.  I’ll provide additional detail in a future post as more research data comes in and in response to your questions.

  1. Make sure you are fully informed regarding what tDCS is and what risks are involved. If you have any unusual medical issues, consult with your doctor. See the list of web links below as a starting point of additional information and cautions.
  2. Make sure you have your tDCS device, battery, electrodes, headphones, straps, etc. ready to go. If you will be using a Halo headset, follow their directions as appropriate.
  3. Wet your electrodes (not to the point of dripping) with saline or tap water as desired. Place the anode (red or plus lead) at C4 and the cathode at C3 per the diagram above.
  4. Set your tDCS device for 1 to 1.5 mA and 20 to 25 minutes for the  session time.
  5. Start your tDCS session.

Sports Training and Activity

1. If your motions during your sport will not jar your electrodes you can begin your training as soon as your tDCS session begins. Electrode movement during a tDCS session could cause uncomfortable electrical surges and sags – and cause your tDCS session to terminate.  Your electrodes must remain stable and in contact with your scalp throughout your tDCS session. No you can’t swim during a tDCS session.

2. If your sport would likely jar or jostle your electrodes (or involves water), complete your tDCS session just before you begin training or activity. Relax and use the time to study information about your sport, competitors, etc.

3. For either case above, you may remove your tDCS electrodes as soon as your session completes. It’s important to know that enhanced neuroplasticity (brain stimulation) will go on for an hour or two after your tDCS session is complete. So train correctly during this time – use a coach that knows what they are doing – or at least be aware of yourself and that you are executing your activity in a correct and enhancing way.

4. With tDCS, repetition is important. You may not notice any dramatic changes right away – during your first training session. Perhaps by the 5th training session a positive change may become apparent.

5. If you experience any of the following, stop using tDCS and contact someone familiar with brain stimulation who can suggest changes in electrode placement  or other modifications to your program… burning or excessive skin irritation at the electrode site, dizziness, light flashes in your eyes (called phosphenes), any feeling or discomfort that seems unusual for the kind of training you are doing.

6. Some articles about tDCS suggest that you do no more than two sessions in a day, separated by at least two hours.  Further, some have reported difficulty sleeping if brain stimulation occurs after about 5:00PM.

Reasons tDCS Fails

Lets be honest, no treatment works for everyone. Even aspirin works better for some than others. tDCS is no different. It is my observation that those who can keep up the repitition required by tDCS (self motivated – or are motivated by a coach) do the best. If you can’t be disiplined enough to use tDCS in a regular and repeated way, then you will fail to achieve any gains with it.

Wrapping It Up

tDCS offeres at least the possibility that elite athletes can improve their performance in a noticable way with a technology that has an excellent track record of safety. However, this is still an area of much experimentation and research and may require varying electrode locations, current levels, and treatment times for each individual. It will be some time before enough experience is gained with enough athletes to know, for example, the proper setup and training techniques to improve basketball free-throw percentage, or football field-goal range and accuracy, etc. I can envision guide books (or at least web sites) that focus on particular sports and specific kinds of improvment and all the treatment variations that are possible.

In any case, stay tuned to your favorite sports news outlet as brain stimulation takes hold – and produces better scores and new records in all kinds of sports competition! This will be amazing to watch (and participate in.)

Web Links

Check out the following as a starting point of additional information on tDCS, brain stimulation, and safety:

*transcranial direct current stimulation


Go Flow Pro, Nice Brain Stimulation Kit!

It’s no secret that I’m a bit of a fan of The small London based DIY company has been on a serious innovation binge since they entered the market with the V1 – which was by far the most versatile tDCS* device in its time. Later released the V2 which is still one of the most capable brain stimulation devices on the market (not just tDCS.)  Late last year, introduced the Go Flow – a simple, very portable, tDCS device for a very low price. It has evolved into a complete kit that the company is calling the Go Flow Pro – it includes all you need to have a very capable tDCS device that is  simple to operate – and only $99 complete. was kind enough to send me a pre-production Go Flow Pro and I thought you might like to see what it looks like. The final production kits (that should ship very shortly) may be slightly different (given production tweaks, marketing decisions, etc.)

(Pre-production Go Flow Pro kit. tDCS device, battery, wires,stick-on and sponge electrodes, and headband. Not shown are the sponges – also included.)

(Here is the Go Flow Pro on set up with my test head.  Note that the new magnetic attach wires and sponge electrode shell in use the with the headband. )

(The new headband has several “button holes”. The electrode shells are place in the desired button holes for the montage desired. The magnetic wire sticks to the electrode shell and plugs into the Go Flow tDCS device.  Away you go!)

(Here is the whole setup again showing the headband and cathode electrode attached to the shell – the anode is out of view. BTW the strap can go under the chin and over the head if needed. I can imagine some montages will require two straps.)

I’ll have much more to say about the Go Flow Pro and how it can be used to nudge the brain in desirable ways in my next post.  The Go Flow Pro can be purchase directly from or Final production units should be shipping in May.

(A sponge electrode – top – and a Caputron 2×2 sponge electrode – nearly identical sponge surface area.)

*tDCS is transcranial direct current stimulation. See my blog ( or for more information.


Electrode Wars! (Well Not Quite)


I’ve written a ton about all the great potential of brain stimulation and particularly tDCS. There are many studies and plenty of anecdote related to improving memory and creativity, reducing chronic pain, treating depression, etc. More about all of that later.

The National Center for Health Statistics just announced that the U.S. suicide rate has climbed to a 30-year high. This coupled with data that we have long had in hand – about 10% of the U.S. population is clinically depressed, that there are about 40,000 suicides in the U.S. every year, and that only about 20% of the people needing depression related treatment actually get it – tells you that our national mental health system is a failure.

tDCS* has emerged as a treatment method that is inexpensive, simple, safe, and has good effect for many of those who use it for depression related symptoms. tDCS use by professionals continues to grow and certainly the do-it-yourself (DIY) community is enthusiastic about it. tDCS requires placing electrodes on the head and passing a very tiny current between them in order to nudge the brain towards proper functioning (or enhancement.)

There are two popular kinds of electrodes, stick-on and sponge. Stick-on electrodes are simple and very useful when hair won’t get in the way. They are used once (or a few times for some) and discarded.  Sponge electrodes are preferred by most using tDCS as it can be used on skin or over hair, can be reused many times, and has a low cost per use.

Amrex has been the big dog in sponge electrodes for the tDCS world for a long time but competitors are emerging and I’d like to cover two of them here. First, Caputron ( introduced a nice “clone” of the Amrex electrode some time ago and continues to offer it today.  It is available as a 3×3 (typical size used in tDCS) or 2×2 shell (about 2×2 and 1.1 x 1.1 sponge contact dimension). The Caputron electrode does have two distinct advantages – first they are more flexible and conform to curves of the skull more easily, and second they are much less expensive! A 3×3 electrode is only $12! They, like the Amrex electrodes have a banana jack for connection and a stainless steel screen behind the sponge for even current distribution. Also like Amrex electrodes, you can buy replacement sponges from Caputron (about $1 each) – or make your own from kitchen sponges.

(The Caputron shell – orange – with the sponge removed. Note the stainless screen and banana jack. An Amrex shell is shown too – gray.)

Caputron also offers a nice, general purpose strap system that can be used with any brand of sponge electrodes. It’s called the Caputron Universal Strap System and is made of rubber (not latex). There are two independent straps that are marked with a centimeter scale that makes accurate placement of electrodes easy. The system is stretchy and very adjustable for position and head size. I really like this strap system and you will too – if you don’t mind the $75 price.

(The Caputron Universal Strap on my much abused “test head”. The strap is versatile and easy to use.) (famous for the V2 brain stimulation device and the new Go Flow tDCS device) is just releasing a new sponge electrode system  for the V2 and Go Flow that is very interesting! It consists of a rubber-like shell (about 2×2) and sponges that when inserted result in a 1.25 x 1.25 inch sponge contact area. To connect to the sponge electrodes, you need a special V2/Go Flow cable that attaches magnetically to the electrode shell. That means the problem of having an electrode jerked off of your head should you become tangled somehow goes away. This is a vastly better connection technology than the banana plug and socket used by many manufactures.

(The new electrode shell and sponge. Note the magnetic ends on the wires for easy attachment to the electrode shells. A new production white Go Flow and 9 volt battery are also shown.) is also releasing a companion head strap with strategically placed cutouts that allows easy and repeatable placement of the electrodes on your head. This new strap ships as part of the “Go Flow Pro” which includes the tDCS device, wires, strap, electrode shells (and sponges) and will be available for separate purchase too.

(The new electrode shells, strap, and Go Flow with battery. Note: some electrode setups may require two straps.)

All of the items mentioned in this blog post (including Amrex and can be purchased from Caputron (  It’s great to have a dealer here in the U.S. that is carrying a huge variety of devices and accessories. I suggest you visit their web site and have a look.

There are many articles about tDCS available on my blog ( ) and via .

*transcranial direct current stimulation



What Should I Buy If I’m New to tDCS?



Great News! Caputron has just become a dealer for products. This means a US source for products (faster, less expensive shipping, support, etc.) See

++++ UPDATE +++++ UPDATE +++++ UPDATE +++++

In mid-March of 2016, released a version of the Go Flow with sponge electrodes. This now becomes my “ideal” for someone new to tDCS. Sponge electrodes are very versatile and are reusable. The new “Go Flow Pro” includes the tDCS device, wire, sponge holders, sponges, and headband – all for $99 plus shipping (from London).

(The new Go Flow Pro. Image does not show connecting wire or sponges which are included.)

I’m leaving the rest of the post (below) in case you prefer stick-on electrodes or wish to make your own connecting cables.

+++++ FEB 2016 POST BELOW +++++ FEB 2016 POST BELOW +++++

In the last few years I’ve written plenty about tDCS (transcranial direct current stimulation), what it can do, various tDCS devices, etc. It’s been fun and gratifying to watch the whole “brain hacking” arena develop and grow – to the point that a good level of maturity has been obtained. Thousands of people have improved their lives in significant ways through tDCS – improving their learning/memory, easing depression and chronic pain, improving athletic ability, and much more.

I frequently get asked “what should I buy if I want to try tDCS?” The good news is that there are now plenty of good tDCS devices in the marketplace. A simple Google search for “tDCS device” will reveal many possible choices. If I were getting started in tDCS I would strongly consider the following (my opinion – yours may vary!):

  1. tDCS Device: My current favorite is the Go Flow ( ) You can buy this cool little device for $39.99 plus shipping!  It is tiny (easy to carry in your shirt pocket), versatile, and does all the important things a tDCS device should do. The kit includes the tDCS device, connecting wire, stick-on electrodes, and a 9 volt battery.IMG_2912 (3)
  2. Adapter Cable: You will want a cable to adapt the Go Flow to standard tDCS cables. I would order ( ) It is $9.00 plus shipping (order at the same time you get the Go Flow to save on shipping.)
  3. Electrodes: Most people do best using sponge electrodes. I prefer Amrex 3×3 electrodes.  They are available from many medical supply houses (Caputron Medical), Amazon, and more. They cost around $20 each and you will need two. The sponge can be easily replaced with a cut kitchen sponge when necessary.
  4. You will need a cable to connect the electrodes to the Go Flow and its adapter cable.  I suggest ( ) It’s $6.95 plus shipping. There are other suppliers if you prefer.
  5. Last, you will need a simple headband to hold the electrodes in place for your tDCS sessions.  Almost any headband will do.  It needs to hold the electrodes firmly, but not so tight as to be uncomfortable.  I use Suddora Athletic Headbands – available from Amazon and others for about $6.00


So what does it all add up to? You will spend a little over $100 to buy all of the above (and pay shipping). This is a very reasonable cost when compared to that of long term medication use or the price of fancier brain hacking devices.  I use the exact setup shown above (as do some of my friends) and find it simple and convenient.

Again, you may prefer a different brand or type of tDCS device. See my blog or do some Google searching for information on other tDCS devices in this same price category.

If you think you might want something really sophisticated, consider the V2 . I think it represents the “state of the art” in DIY brain hacking capabilities. It costs considerably more ( $299 for the V2 module ), but can be used with the cables and electrodes mentioned above.

For more information on tDCS and brain hacking, see:

You should also look at:




How to Pick the Right Stuff for the Go Flow tDCS Device

(NOTE: The retail packaging and pricing of the Go Flow has changed as of mid-March 2016. See for details. This is part 2 of my series on the Go Flow. See for more.)


So you are interested in buying a Go Flow tDCS* device? What accessories should you buy – and where can you find information on electrode placements and more? In this post I’ll review your options and make some suggestions based on my experience with tDCS and the Go Flow.

Go Flow image 2
(Image from the web site.)

Decisions, Decisions – Electrodes First

Oddly, you first need to decide whether you will use sponge or stick-on electrodes in your Go Flow tDCS sessions. Visit to see common tDCS electrode placement scenarios. If the one you select involves placing an electrode over hair, stick-on electrodes will not work and you will need to use sponge electrodes. Why this choice comes first will become clear now…

The Go Flow tDCS module can be purchased alone ($9.99) or in a kit including stick-on electrodes and wire. For $19.99 you can get a kit that includes standard hydro-gel stick-on pads or for $29.99 you can get the kit with “Pro” hydro-gel stick-on pads. See for details and ordering information. If you intend to use 3rd party sponge electrodes (like Amrex), you can buy either the $19.99 or $29.99 kit and modify the included cable.

Go Flow review pic 3
(This is the $29.99 kit – complete and ready to go. It includes the module, wire, electrodes, and battery. Image from the web site.)

One subtle difference in the two types of stick-on pads is the use of silver as a conductor in the “Pro” pads. It’s important to note that stick-on pads are a “consumable” and must be periodically replaced (sold on the site.) You’ll need to keep in mind shipping delays in ordering replacements. Also, as mentioned above, stick-on pads won’t work over hair – only on bare skin. I personally prefer to use sponge-type wetted electrodes. Some consider them a hassle (getting them wet, making sure they are not too wet, cleaning them, etc.) However, they can be used on skin or hair and the sponges tend to last for many tDCS sessions.

3rd Party Electrodes

The Go Flow kits come with a nice connecting cable with magnetic ends designed to connect to specific stick-on type electrodes. If you choose to go 3rd party for electrodes (sponge or otherwise), you may need a different electrode connector. For example, connecting to Amrex sponge electrodes requires a 4mm banana plug.  A simple solution is to cut the ends off of the supplied wire and put on whatever type of connectors you need. Banana plugs are widely available from Radio Shack, Amazon, Parts Express, etc.

(If you are a bit handy, you can cut the default ends off of the kit supplied Go Flow cable and attach your own ends. Here I’ve soldered banana plugs on one of my cables. Note: I fill the shell of the plug with silicon rubber to act as a strain relief.)

I’d love to see begin to sell preconfigured cables that include banana connectors and pin-type connectors for TENS electrodes (cheap and widely available.)

Going with Amrex Sponge Electrodes (instead of stick-on)

Amrex electrodes (and knock-offs) are widely available from medical supply companies (many online) and . I suggest purchasing the 3×3 size but other sizes are available (you will need two.) You can cut ordinary kitchen sponges to fit the Amrex shell as you need to do sponge replacement. Amrex 3×3 electrodes sell typically for $15 to $20 each depending on the supplier.

Another Cable/Adapter Option for Amrex Sponge Electrodes

If you choose to use Amrex sponge electrodes (or knock offs), you can follow the suggestion above and modify a supplied cable or purchase the following:

  1. An adapter that converts the unusual 2.5 mm 4 conductor jack of the Go Flow to a more common 3.5 mm 2 conductor jack. Source: $6 plus shipping
  2. A cable with a 3.5 mm 2 conductor plug, lead wire, and banana plugs that connect to the Amrex sponge electrodes. Source: $7 plus shipping. This kind of cable can be ordered from a number of different suppliers.

One last possibility if you are handy with a soldering iron is to make your own cable from scratch. is a good source for the needed 4 conductor 2.5 mm plug, banana plugs, and other needs.

Headband for Sponge Electrodes

You will need a headband to hold sponge-type electrodes in place during a tDCS session. A sweatband sold in discount and sporting goods stores will work nicely.


The Go Flow is a great tDCS device – providing great capability at a very low price. Making the proper selections for your needs is important. Remember, you need the Go Flow module, connecting wire, and electrodes (and perhaps a headband.)  The Go Flow kits are a great bargain!

Feel free to post questions on this blog – or email me at . What else would you like to know about tDCS by way of this blog?

If you haven’t already, please see part 1 of my series on the Go Flow at

See my blog  for more general information on tDCS. is also an excellent resource.

Thank you.



Anyone considering the use of tDCS or any brain stimulation technology should do their homework. It’s important to understand the technology, risks, and if you should be excluded based on seizure disorder or other complications. If you are unsure you should seek the advice of a doctor, preferably one using tDCS or similar technologies in their practice.

*tDCS is transcranial direct current stimulation

The Brain Hacking Revolution Continues: Introducing the Go Flow

( NOTE: The retail packaging and pricing of the Go Flow has changed as of mid-March 2016. See for details. This is part 1 of my series on the Go Flow. Parts 2 and 3 are also available at )

(The Go Flow in white or gray – next to a V2)


While preparing this blog post, I pondered what its title might be.  Here are a few of my ideas:

The New Price of Freedom (from Depression, Chronic Pain, and more) $9.99

New Go Flow tDCS Device Raises the Bar, AGAIN!

tDCS* for Everyone! The New Go Flow

Hey Medical Community. No More Excuses, Time To Get On Board.

…well, you get the idea. has done it again – bringing to the world a really cool, very capable, tDCS device at a price that will rock the marketplace, $9.99. That’s right, not $999 or $99.99, but less than $10! Add electrodes and wires and you can have a top-notch tDCS kit for less than $30!

For those suffering with depression, chronic pain, and learning disabilities, the miracle of tDCS just became VERY affordable. This same device can also be used to enhance memory, problem solving ability, creativity, athletic ability, etc.  Ahh yes, tDCS is a wonderful thing.

And now, my oft repeated question for the medical and mental health community – when are you going to at least give tDCS a chance? You are more than happy to experiment on your patients with a variety of pharmaceuticals – frequently with poor results and nasty side-effects. Why not try something that provides great relief to some (honestly, not everyone) – without scary side-effects? Add up the annual cost to the patient of buying pharmaceuticals and follow-up care vs. the cost of a Go Flow, a few 9 volt batteries, and some oversight. Wow, are you beginning to get it?

If you are hearing about tDCS for the first time, please see my other related posts at or check out for more of the basics on this great technology!

The Go Flow

The Go Flow tDCS device is a tiny module that snaps on to the top of a standard 9 volt battery. A pair of electrodes plug into the module using the same plug configuration that uses with their V2 product.

Some Key Features

  • Current delivery from 0.5 to 2 mA in 0.125 mA increments
  • Timed delivery from 5 to 35 minutes
  • Ramped Current up / down
  • Easy to use control switch and LED indicators
  • Tiny, light, rugged. Uses a standard 9 volt battery
  • Perfect for beginner, pro, home and travel use


Let’s say you want to treat depression with a Go Flow. What would a tDCS session with the Go Flow be like? Here are typical steps with some discussion along the way:

  1. Attach electrodes to the forehead area (anode on the high-left forehead, called F3, cathode on the right above the eyebrow, called FP2. See for details.) You can use stick-on gel electrodes or wetted sponge electrodes. I discuss how to tell anode from cathode below.
  2. Plug electrode wire into the Go Flow unit
  3. Attach the Go Flow module to a 9 volt battery
  4. The Go Flow LEDs will light up in sequence as it powers up and leave you with one or more ORANGE LEDs lit, showing the amount of current for your session. The lowest LED represents 0.5 mA, the highest 2.0 mA. To change the current level slide the rocker switch UP for more current or DOWN for less.  A typical tDCS session is 1, 1.5, or 2 mA.Go Flow image 2
    (The Go Flow module showing LED display, electrode jack, and slide switch.)
  5. Once you have the desired session current set you PRESS IN on the rocker switch to move to the time setting.
  6. Session time is shown with GREEN LEDs with each representing 5 minutes of time. Slide the rocker switch UP for more time or down for less.  A typical tDCS session is 20 minutes.
  7. You are ready to begin your tDCS session! To START, PRESS IN on the rocker switch one more time.
  8. With a session in progress, the LED display will alternate between GREEN, showing time remaining, and ORANGE showing the actual delivered current level.

(The Go Flow connected to my “test head” using Amrex electrodes.)

Additional Notes:

  1. You can STOP your tDCS session anytime by pressing IN on the slide switch. Current will ramp down gently to zero
  2. You can adjust current level up or down during a session. Move the slide switch up or down as desired. Each movement will change the current 0.125 mA
  3. There is no ON/OFF switch on the Go Flow. When your session is complete, UNPLUG the 9 volt battery

(Wow how things have changed! Go Flow next to a DIY tDCS device I built a couple of years ago. Thank you!)

Technical Notes:

  1. I measured the current output of the two Go Flow units I have and found current to be spot on with my current selection.
  2. Maximum output voltage is 24 volts (needed to overcome electrode resistance, skin resistance, etc. This is much better than the 9 volt max of many DIY tDCS devices.
  3. Current drain on the battery is, according to my measurements, about 24 mA during a 2 mA tDCS session. It is about 13 mA for a 1 mA session.  Current drain varies somewhat depending on how many indicator LEDs are lit.
  4. A Duracell CopperTop 9 volt battery goes from 9 volts to 8 volts in 25 hours with a 10 mA load. So one could expect at least 50 to 100 tDCS sessions per battery (highly dependent on session settings.)

Go Flow inside 1
(Inside the Go Flow. Image from

Electrode Choices with the Go Flow

  1. has a number of electrode choices available on their web site – and third party electrodes can be used with the Go Flow, too. supplied electrodes and cable are marked to indicate anode and cathode. Some models have a big X stamped or printed on the anode and a Y on the cathode.  With any electrodes, if you are not sure of polarity, check with a volt meter.
  2. The electrode connector in the Go Flow uses a 2.5 mm four conductor plug for its mate. From the tip of the plug (1) to base (4): 1-unused, 2-unused, 3-Y cathode, 4-X anode (which is the same as the default V2 setup.)
  3. has adapter cables and such on their web site. You can also easily build your own cables with parts from Radio-Shack, Parts Express, etc.
  4. I have a personal preference for wetted sponge-type electrodes as they can be used on skin and over hair and provide excellent conductivity.


The Go Flow represents a true shift in the brain stimulation and tDCS marketplace. Via this new product they provide all the capability a typical user will ever need – in a tiny, easy to use, convenient package.  The Go Flow, sold along with a good instructional video could literally change the lives of millions for the better. I’d love to travel around providing instructional seminars for medical and mental health professional showing them the Go Flow and that tDCS really is a miracle! Anyone willing to fund that?

The Go Flow can be ordered now at . Watch for Part 2 of my review of the Go Flow coming soon.


Anyone considering the use of tDCS or any brain stimulation technology should do their homework. It’s important to understand the technology, risks, and if you should be excluded based on seizure disorder or other complications. If you are unsure you should seek the advice of a doctor, preferably one using tDCS or similar technologies in their practice.

*tDCS is transcranial direct current stimulation


Solid Advice on Selecting V2 Device and Accessories

Introduction, the London based small business that keeps innovating in the DIY tDCS* and brain stimulation space now has a number of products in their line.  Some people are confused about which parts and pieces to buy in order to have the right stuff to move ahead with a tDCS treatment (or other) program.  I thought I could help a little with this blog post.

The V2 Brain Stimulation Device

First, you will need a V2 stimulator device. The device currently sells for about $199 and with current firmware is far beyond any of the competition in terms of versatility, capability, portability, etc. I won’t take time here to list all of the MANY things the V2 can do, but suffice it to say that manufacturers of “professional grade” tDCS, tACS, etc. equipment are probably nervous about where is driving prices and capabilities! In my opinion, the V2 is THE brain stimulation device to buy at its price point.

Note: Though the V2 can be controlled via an IOS or Android device, it’s not really necessary. The V2 on-screen display and joystick will quickly and easily let you access V2 setup and features.

(The V2. In my opinion, a great brain stimulation device.)


Next, you need electrodes. offers FOUR different electrode options for you to choose from:

Option 1: The Gamer Headset.

(The Gamer headset with sponges removed. Sponge holders can be separated from the metal band for added versatility.)

This is probably the best choice for most stimulation (tDCS) situations. It consists of two sponge electrodes mounted on a flexible band. The electrode “holders” can bend inward to place the electrodes properly on the forehead. HOWEVER, I find it best to remove the electrode holders from the band and use an elastic headband to position the electrode sponges as desired.  The Gamer headset does NOT restrict electrode placement – you just need to add your own elastic band.

(Look closely at this pic and you will see the Gamer electrode holders have been removed from the included metal band. Instead they are placed on my test head using an elastic band – in this case for the savant montage.)

Option 2: The EDGE Headset.

This option should ONLY be selected IF you are interested in researching brain stimulation and its possible impact of athletic performance. This is a special-purpose (not general purpose) headset. The electrode placements are unusual and will not address the needs of most tDCS users.

(The EDGE headset showing the main electrode at the top and the secondary electrode that would be attached to the upper arm at the bottom. This is a special purpose brain stimulation headset.)

Option 3: Moovs Stick-on Gel Electrodes

This is a new option from It is a pair of electrodes that adhere to open areas of skin (NOT HAIR or through hair.) Because of this, they are a bit limited in terms of where they can be placed. They are light and very comfortable – and do stick to skin well. But if part of your treatment montage involves placing electrodes over hair – you should select the GAMER sponge headset (or option 4 below) instead. Remember, the Gamer electrodes can be placed anywhere with an elastic band.

(The Moovs stick-on electrodes. Image from the website.)

Option 4: Your Own Electrodes

I and many other brain stimulation researchers and testers have been very pleased with the line of sponge electrodes from Amrex. Most of us use the 3×3 Amrex, but sometimes the smaller 2×2 is useful.  The Amrex sponge electrodes are not cheap, but they are built to last. to their credit makes it EASY to use your own electrodes, whatever you prefer, via a simple adapter cable (about $10 from The cable allows you to plug in “TENS” compatible connecting wires, including those that have banana plugs for the Amrex electrodes. You can buy electrodes, wires, and more at almost any medical supply house – and via Amazon!

(The Amrex 3×3 is shown. It consists of a rubber shell, stainless wire screen, and a sponge. Connection is via a banana plug to a jack at the top of the electrode.)


The V2 represents the best capability I am aware of for DIY tDCS (and brain stimulation) users. Yes, there are many less expensive devices (tDCS) in the market and they are appropriate for those on limited budgets, just starting out with tDCS, etc. But if you want the most capability for your future brain stimulation needs, I don’t know of a better product in the market right now. Remember, you will need a V2 and electrodes.  If you buy it all from you will spend around $300.  If you choose to use your own electrodes (and connecting wires), you can spend a little less (total.)


As I have mentioned, is a SMALL company based in London doing incredibly innovative work in the field of brain stimulation technology – with a focus (pardon the pun) on the DIY marketplace (not the multi-million dollar grant driven labs.) I believe they have become somewhat overwhelmed by their own success. So YOU may encounter slow service on any special request you make of (tech support, returns, etc.)  Be prepared to be patient. The web site also is overly complicated by its attempts to be trendy. I suggest you hit the “All Products” link at the top left as a starting point.

By the way, will not diagnose or prescribe treatment for you – so don’t be upset if they ignore such requests. Do your homework on tDCS (brain stimulation), become informed, and make your own carefully considered decisions about brain stimulation and its appropriateness for your situation.

See the following for more information on tDCS:

*tDCS is transcranial direct current stimulation

Just in Time for Back to School! Super Specific Devices tDCS!


It’s been a very busy summer and I’m long overdue in writing a review of Super Specific Devices (SSD) line of tDCS* equipment targeting the DIY marketplace.  SSD has been quietly building some high-quality gear for several months now and their various models deserve a good look.

(The SSD Voltage Selectable tDCS Device)

The Basics

Let’s start with the basic unit – on the SSD website, you choose a unit powered by either a 9 or 12 volt battery and an analog or digital meter.

The tDCS circuit is a simple but reliable LM type current regulator with the added safety bonus of in-circuit current limiting diodes.  All components are nicely soldered to a PC board and all connections to that board are secured with glue.  SSD has chosen to build their tDCS devices into a nicely made and finished wood box – it has a more professional appearance than do many of the tDCS devices on the market today. Electrodes are connected to the device via a small “TENS” style connector on the side of the unit.

(Inside the 12 volt version of the SSD tDCS device is simple and neat. The type 23A battery can be seen to the right and the current regulator board is to the top left of the box. Approx $115)

All units are supplied with a starter set of lead-wires, non-stick electrodes, sponges, and self-adhering tape (rather than a headband).  If you are really serious about tDCS, you might want to consider the accessory banana plug adapter cord for use with Amrex and similar sponge electrodes (about $10).



(Operation is simple! Start with the unit turned off and the dial rotated fully counter-clockwise. Place wetted sponge electrodes as desired, turn on the unit, and adjust current to desired level. Run session for planned treatment time and at completion, rotate the dial fully counter-clockwise and turn the unit off.)

The SSD Voltage Selectable tDCS Device

Super Specific Devices also offers a new tDCS device that provides switch-selectable 9, 12, and 18 volt settings. The selectable voltage range helps deal with difficult electrode setups (like one electrode placed on the shoulder or arm, or stick-on electrodes) where a 9 volt tDCS device may not be able to overcome the higher resistance to deliver the desired current level. The ability to switch to 12 or 18 volts may make all the difference in reaching a desired treatment current level.

(The inside of the voltage selectable tDCS device is obviously more congested. A 9 volt battery powers the analog meter unit with the voltage boost circuit at the bottom left and the regulator circuit at the top center of the box.  The selector switch is at the very top left of this photo. The wiring looks more ominous than it really is. Much of the wire is related to selecting voltage and illuminating the tri-color LED appropriately. With so much point-to-point wiring, careful soldering and quality checks are a must though.)

The circuit in the voltage selectable units is again built around an LM current regulator with current limiting diode backup so maximum current cannot exceed 2.5 mA.  Interestingly the digital display version of the voltage selectable unit is USB rechargeable! According to the SSD web site, the device is switch protected so that USB energy cannot be used during a tDCS session.  This is a wise safety feature. The use of rechargeable batteries (rather than throw-away) and USB charging might be a good trend for all tDCS manufacturers to follow – just adopt the practice of isolating charging from operation as SSD has done!

(From the SSD web site. The voltage selectable, digital display, USB charging version. Approx $175)

My Testing

I have tested the 12 volt version (analog meter) and the voltage selectable version (analog meter) from Super Specific Devices and like them very much. They are solidly built using a tried and tested tDCS device design and are likely to provide reliable service for years.  Given the low price of SSD units, I can’t imagine an individual going to the trouble to find all the components and taking the time to build tDCS device(s) with this level of construction.  Time would be better spent buying and using the SSD device!

I subjected each of the SSD devices I have on hand to my usual torture and use tests. In every case, the units delivered the current level specified. In my simulated failure modes, I was never able to exceed 2.5 mA output current.

As with most tDCS vendors servicing the DIY market, SSD does not provide medical advice (diagnosis, treatment recommendations, etc.) The instructions they provide with each unit are complete in the sense of learning how to operate the supplied unit.  However, each customer is expected to seek out other sources for information on tDCS, what is possible, and treatment montages.

Final Comments

I continue to be pleased to see a wide variety of capable tDCS devices available to the public from a number of vendors.  Units span a wide range from simple and cheap to more expensive and very sophisticated.  Super Specific Devices seems to have found a niche in the middle with products that have a low price but a quality build, nice appearance, and solid features.

Super Specific Devices web site:

*tDCS is transcranial direct current stimulation




Apex Type A tDCS Device Review


I am so pleased that an assortment of excellent tDCS* devices is now reaching the market – making the benefits of tDCS available to more and more people worldwide.  The range of devices is impressive – from simple and cheap to expensive and very sophisticated.

I won’t take the time or space here to detail all the potential benefits of tDCS or why you should consider obtaining a device – but suffice it to say that millions of people could dramatically improve their lives with tDCS. tDCS can be used to treat depression, chronic pain, enhance memory, and much more.  See the web sites I list below as a good starting point for more information on tDCS.

(Apex Type A Main Unit)

The Apex Type A

The Apex type A “Adjustable Direct Current Generator” is a low priced but well-built device that uses a classic tDCS design that includes a 9 volt battery, an LM334 current regulator, a programming resistor to limit delivered current to about 2 mA and a meter to monitor current delivered.  This design (and variations) have been used by do-it-yourselfers for years (I’ve built several myself) and has proven to be very reliable, simple, and safe.

Apex saves you the considerable time and trouble to locate all the parts to build your own device by manufacturing a solid unit that looks like it will last for many years. The base unit alone sells for about $99 and a complete kit including head-band, electrodes, wires, etc. is about $139 (plus shipping).

Apex kit
(Apex Type A and accessories – from the web site)

As with most other tDCS device manufacturers, Apex does not provide medical advice, information about which tDCS electrode placements will work for you, etc. They leave it up to you to do your homework by reading the considerable about of material available online (see example links below) to decide if tDCS is right for you and what treatment method will work best.

The Apex Type A comes with a well written user guide that takes the user step-by-step through installing a 9 volt battery, connecting wires and electrodes, and running a simple test to see that the unit is working as it should.  There are two controls and two indicators on the type A:

  • On-off switch: clearly marked
  • Current adjustment dial: clockwise rotation raises current, the opposite to reduce current
  • Indicator LED: glows blue when the unit is turned on
  • Meter: I consider this almost a must-have in a consumer tDCS device. It clearly shows the amount of current being delivered during a tDCS session.

It’s also worth noting that the Apex Type A allows for the simultaneous connection of two sets of electrodes. Most users would rarely if ever do this – and it’s important to remember that device output current (max 2 mA) will divide between the sets of electrodes (probably not evenly – due to different resistance through the head at different locations.)

Testing and Use

As I mentioned above, I’m very familiar with the classic design of the Apex Type A and can say that the device performed exactly as expected – delivering a clean, DC current at a maximum of 2 mA (depending on dial setting.)


As you can see from the photos of the inside of the unit, build quality is very high.  All solder joints are well-made and clean, and mechanical attachment of the circuit board, controls, etc. is very solid. Some may object to the use of hand-assembly / perf-board instead of machine assembly / printed circuit board – and I might too except that the electronics of this classic design are very simple and as you can see involve only six solder joints on the circuit board itself.  As long as Apex continues good quality control and inspection procedures, this method of construction is perfectly fine.

(Construction is simple and solid.)

(Assembly is neat and well done.

Is 9 Volts Enough?

As far as a tDCS device is concerned, a human head is nothing but a big, liquid filled resistor. All the device does is try its best to deliver a consistent, stable one to two milliamps to cause the desired treatment effect.  9 volts is about the minimum that can reliably deliver the desired current level given circuit, hair, skin, etc. resistance that does it’s best to limit current flow.  Many commercial tDCS devices use 12 or 18 volts – some go as high as 80 volts! The higher voltages make it easier to overcome higher resistance (for example if one electrode is on the forehead and one on the shoulder). But the higher the voltage, the more opportunity there is for a painful (if not dangerous) experience if something goes wrong.  So many of the simpler tDCS devices elect to use a single 9 volt battery (or sometimes two in series).

Given the low voltage of the Apex Type A, it is very important that you do at least the following to make sure your treatment current is as you select:

  1. Use saline water and sponge electrodes (you can make your own saline and sponge electrodes if you like)
  2. Get the sponges really wet, then squeeze them out a bit (you don’t want water dripping down your head)
  3. Use a good head-band. Your head-band will need to be tight – not uncomfortably so, but tight

(Controls are simple and work well. This is a Type A set for maximum current, with a new battery and shorted anode and cathode leads. Note the maximum current of about 2 mA.)

When you start a tDCS session, expect current to rise slowly (over two or three minutes) as your scalp or skin gets wetter. You may find it desirable to adjust the current control on the Apex Type A once or twice during your tDCS session.


Apex does a nice job of providing a simple, reliable, well-built tDCS device that will do exactly what it is supposed to do – provide clean 1 to 2 mA DC for your tDCS application. They provide good operation instructions with the device and have a wide array of backup material on their web site. Well done Apex!


*tDCS is transcranial direct current stimulation

Time to Take Another Look At tDCS and more


About two years ago burst on the do-it-yourself tDCS scene with a headset marketed to “gamers” – claiming to offer improved game performance (higher scores).  A few folks like myself recognized the headset (V1) for what it was – a remarkable, capable tDCS device that could be used for ANY tDCS related purpose including treating depression, chronic pain, enhancing memory, etc. – and yes, improving game scores!  The V1 headset was truly a leap beyond anything else available to the DIY community offering an all-in-one headset that could be controlled via Bluetooth, offered built-on and external electrodes, all in a very nicely designed package.

(Famous or infamous V1 ad campaign)

Critics quickly emerged, as they often do, describing customer relations related problems with – many justified, and technical issues with the product – many unjustified.  It seemed was surprised by their own success and unprepared for the order volume and normal support requirements of such a leading edge product. By the time got its organizational problems resolved, the V1 was winding down and the company was preparing to launch the V2.

The V2

Several months ago, Transcranial Ltd. launched it’s new tDCS product, the V2. It, like the V1, sets a  high bar for the DIY tDCS market. In a tiny package easily small enough to misplace with your car-keys, engineers included all of the technical features of the V1, plus the added versatility of upgradeable firmware (new features), display screen with scrollable selection, redesigned and industry leading headsets, the ability to use 3rd party headsets and related accessories, and more!

(The V2. Tiny! Awesome!)

Interestingly, via their advertising, now seems to recognize the value of their technology for what it is, a real cranial stimulation device – not just for gamers – but for anyone seeking the benefits of tDCS and more.

The V2 ad campaign is more general – making clearer the broad capabilities of the V2.)

Since my initial posting about the V2 (see ) Transcranial Ltd. has upgraded the feature set of the V2 in significant ways!  The V2 now supports tDCS, tACS, tPCS, and tRNS as well an upgraded application for Android devices and soon iOS. The V2 can no longer be referred to as just a tDCS device – it’s now a fully capable, research grade, cranial stimulation device!

It’s a Software World Now!

If you purchase a V2 (or own one now), you may wish to update its firmware periodically to take advantage of new features.  Here are some key steps:

  1. Go to the web site and create an account:
  2. Log in with the account
  3. Connect your V2 doc to your capable PC (or Mac)
  4. On the left of your screen (once logged in), select “My Downloadable Products”
  5. Click the “Microsoft Software” (or Mac) download button and install
  6. Run the installed application and allow it to check and upgrade your V2 to the latest firmware


An Android app is available (search for wave tdcs in the store.) An iOS app for the V2 is due anytime (the old V1 app does not seem to work with the current V2 firmware.) I will say that the on-screen display of the V2 is so good and so versatile that I’m not convinced that the apps currently add much value. Transcranial Ltd. is soon to release a EEG capability called “Quantum” that will apparently link to the V2 – and will probably make the apps very functional and important to use.

( Android app)

Anyway, you must pair the device to your Android or iOS device to use an app. Here are normal pairing procedures:

  1. Make sure Bluetooth is turned on on your Android or iOS device
  2. Turn on the V2 and scroll to Settings, Bluetooth, and make sure Bluetooth is On.
  3. Very quickly your handheld device should find the device and request you type in a code number that you will find displayed on the device. Do that and you are ready to go!
  4. Run the app, set the desired mode (tDCS, etc.), max voltage (20 is typically fine), current (1 to 2 mA), time (typically 20-25 minutes), sham should be off, and START

I’ve noticed that the Android app does not display remaining session time.  You can see it easily on the device by tapping the blue joystick.

More Detailed Instructions?

Like most tDCS vendors, Transcranial Ltd. is trying to stay off of the FDA’s radar by making it clear that they are not producing a medical device – so they shy away from writing application guides and notes. This frustrates some. Users are left to their own creativity to learn how to properly use and get full advantage from a device (V1 or V2). To help V1 headset users, I wrote a pretty detailed set of instructions ( see ) that seem to be popular.  Would you like an equally detailed set of instructions for the V2? Let me know – if there is sufficient interest I’ll be happy to put that together.

Finally, I’ve taken a good bit of heat via email and blogs for being a fan of Unlike some, I saw very early on that their unique product(s), if used correctly, could be used to improve the lives of many – and that has turned out to be true. continues to be one of my favorites in the world of tDCS and cranial stimulation and I, for one, anxiously await their next DIY leading-edge products and the pace they set for the industry.

I look forward to your comments and questions.


1. Photos in this blog are from the internet and include images from and speakwisdom
2. If you are new to tDCS, please read and study carefully before taking any action related to tDCS or any cranial stimulation technology.  I suggest as a starting point:
d. (search for tDCS)