Sports May Drive Brain Stimulation to the Masses

OK – yes this is a long post – but if you are an elite athlete, coach, or a just interested in sports, stay tuned….

IMG_3227
(The $99 plus shipping Go Flow Pro – with it’s included headband allows easy and secure electrode placement. So what does this have to do with sports?)

Introduction

The potential benefits of tDCS* and other brain stimulation technologies have been receiving online and media coverage for a few years now. One would have thought the great things tDCS can do for depression, chronic pain, learning, memory, athletic ability, etc. would be plenty to make it top news everywhere. But alas that is not the case. The Malcolm Gladwell “Tipping Point” has not been reached! tDCS is new, scary (electricity through the brain), and still needs more research and more concrete treatment procedures to tip – but it is rapidly getting there.

The “tipping point” for tDCS and brain stimulation may come via – of all places – elite athletics.

Sports Goes for Brain Stimulation

In recent months the professional and collegiate sports world has started to adopt tDCS (and other brain stimulation technologies) in rather spectacular fashion. One has only to watch the video(s) at haloneuro.com, youtube.com, or read recent articles in sports publications, including Sports Illustrated, to be awed by the results being claimed.

Now that certain elite athletes and their coaches have reported very interesting performance gains every competitive athlete is going to get curious about getting the same edge as word continues to spread. How do I know this? Look at all the demand for – and ruined careers caused by performance enhancing drugs in athletics! If an elite athlete can improve their performance, legally, by 3% or more by using a 9 volt battery don’t you think they will want to try it? What about coaches, fans, and investors – will they encourage athletes to try tDCS? In the years just ahead, you and I will witness a number of athletes (pro and amateur – and their teams) who will compete and succeed  – perhaps setting new records in their chosen sport – by way of brain stimulation.

No you say? If a pro athlete or team is willing to spend millions of dollars on tiny enhancements to shoes or swimsuits just to get a tenth of a second gain, how hard will it be for them to spend $99 or $599 for a brain stimulation device that can potentially bring about a comparatively large performance improvement? They will do it in a heartbeat.

Oh – BTW, you can guess that all of the not-so-elite weekend hacks will want to try brain stimulation too.  Think of all the sports that could be affected: golf, baseball, football, basketball, hockey, track and field, etc. Athletes by the millions! Brain stimulation can potentially help many of them!

Brain stim device manufactures ALERT: a tidal wave of demand is about to come your way! We need good products with good research behind them – and well written end-user guides!

Regulating Performance Enhancing Brain Stimulation

Sports oversight organizations that want to regulate this new form of performance enhancement will find it difficult to impossible. The fact that a small amount of current has passed through the brain of athletes will be impossible to detect – body chemistry will be no different than that of other athletes who have not engaged in electrical brain stimulation.

I’m curious if this summer’s Olympic games will include any athletes using brain stimulation to enhance performance? I don’t – know but would not be surprised. If you see any reports of such, please pass them along to me.

Brain Stimulation for Athletes – A Beginners Guide

While tDCS has been around for many years, it has been used little in the world of sports. There are a few vendors who have created related products (including foc.us, thync.com, and haloneuro.com) But it is the pioneering work by Halo Neuroscience that seems to have really captured the imagination and curiosity of the elites. Halo sells a very interesting Bluetooth headset that includes built-in electrodes positioned to allow stimulation of the motor cortex.


(Halo Neuroscience Bluetooth headset showing their unique tDCS electrodes.)


(Motor cortex diagram. From wikipedia.org.)

There are literally dozens of completed studies mentioned on pubmed.gov that show how a tiny electric current can enhance or attenuate motor cortex activity and related muscle activation.  Until recently, the tDCS equipment required was large, fragile, and expensive.  But Halo, Thync, foc.us, and others have changed that.

21 electrodes of International 10-20 system for EEG.svg
(The 10-20 EEG System diagram. From wikipedia.org)

Exactly where to place electrodes, how much current to use, and for how long, for athletic enhancement is an area still open to much research. Halo Neuroscience, in one of their published studies, mentions placing the tDCS anode (plus) over C4 and the cathode over C3, and stimulating using 1.4 mA for 25 minutes. Other studies (on pubmed.gov for example) mention similar electrode locations or placing the anode at Cz and the cathode on the shoulder with current levels up to 2 mA and times between 20 and 30 minutes.

While the Halo headset is an innovative tool for bringing about athletic improvement, you can use any tDCS device to experiment with simulating the motor cortex. But lets be clear – it is experimenting. There is no FDA or other regulating body I’m aware of that watches over this emerging area of technology.  If you try it, you are truly on the leading edge. Proceed with much caution. Do your homework!

Using a tDCS Device for Motor Cortex Stimulation

Here are a couple of examples of using a commercially available tDCS device to stimulate the motor cortex and thus increase neuroplasticity. Done correctly and with enough repetition an athlete may see improvement in the their particular areas of concentration.

IMG_3230
(foc.us produces the very tiny Go Flow Pro tDCS device that snaps on the top of a 9 volt battery.  I think it is ideal for experimenting with athletic enhancement. I added my own arm-band to hold the tDCS device and battery while in use. It will easily fit in a pocket, too.)

IMG_3235
(Over the years all kinds of things have been used to hold electrodes in place – including head-bands, sticky gel, baseball caps, and yes – headphones! Here is an example of headphones with Caputron 2×2 electrodes attached. I’ve found that “Shoe Goo” glue can be used to stick just about anything to anything – and it works well for this application.)

IMG_3240
(I like the Caputron 2x2s because they are very flexible and conform to the head very well. I show them connected to a Go Flow Pro, but you can use any tDCS device with them – including the BrainStimulator.)


(The BrainStimulator Travel Model is another small tDCS device that seems appropriate for athletic activity. I’ve previously reviewed this device on my blog.)

tDCS Session Steps

Here are the simple steps I follow when using tDCS for athletic improvement.  I’ll provide additional detail in a future post as more research data comes in and in response to your questions.

  1. Make sure you are fully informed regarding what tDCS is and what risks are involved. If you have any unusual medical issues, consult with your doctor. See the list of web links below as a starting point of additional information and cautions.
  2. Make sure you have your tDCS device, battery, electrodes, headphones, straps, etc. ready to go. If you will be using a Halo headset, follow their directions as appropriate.
  3. Wet your electrodes (not to the point of dripping) with saline or tap water as desired. Place the anode (red or plus lead) at C4 and the cathode at C3 per the diagram above.
  4. Set your tDCS device for 1 to 1.5 mA and 20 to 25 minutes for the  session time.
  5. Start your tDCS session.

Sports Training and Activity

1. If your motions during your sport will not jar your electrodes you can begin your training as soon as your tDCS session begins. Electrode movement during a tDCS session could cause uncomfortable electrical surges and sags – and cause your tDCS session to terminate.  Your electrodes must remain stable and in contact with your scalp throughout your tDCS session. No you can’t swim during a tDCS session.

2. If your sport would likely jar or jostle your electrodes (or involves water), complete your tDCS session just before you begin training or activity. Relax and use the time to study information about your sport, competitors, etc.

3. For either case above, you may remove your tDCS electrodes as soon as your session completes. It’s important to know that enhanced neuroplasticity (brain stimulation) will go on for an hour or two after your tDCS session is complete. So train correctly during this time – use a coach that knows what they are doing – or at least be aware of yourself and that you are executing your activity in a correct and enhancing way.

4. With tDCS, repetition is important. You may not notice any dramatic changes right away – during your first training session. Perhaps by the 5th training session a positive change may become apparent.

5. If you experience any of the following, stop using tDCS and contact someone familiar with brain stimulation who can suggest changes in electrode placement  or other modifications to your program… burning or excessive skin irritation at the electrode site, dizziness, light flashes in your eyes (called phosphenes), any feeling or discomfort that seems unusual for the kind of training you are doing.

6. Some articles about tDCS suggest that you do no more than two sessions in a day, separated by at least two hours.  Further, some have reported difficulty sleeping if brain stimulation occurs after about 5:00PM.

Reasons tDCS Fails

Lets be honest, no treatment works for everyone. Even aspirin works better for some than others. tDCS is no different. It is my observation that those who can keep up the repitition required by tDCS (self motivated – or are motivated by a coach) do the best. If you can’t be disiplined enough to use tDCS in a regular and repeated way, then you will fail to achieve any gains with it.

Wrapping It Up

tDCS offeres at least the possibility that elite athletes can improve their performance in a noticable way with a technology that has an excellent track record of safety. However, this is still an area of much experimentation and research and may require varying electrode locations, current levels, and treatment times for each individual. It will be some time before enough experience is gained with enough athletes to know, for example, the proper setup and training techniques to improve basketball free-throw percentage, or football field-goal range and accuracy, etc. I can envision guide books (or at least web sites) that focus on particular sports and specific kinds of improvment and all the treatment variations that are possible.

In any case, stay tuned to your favorite sports news outlet as brain stimulation takes hold – and produces better scores and new records in all kinds of sports competition! This will be amazing to watch (and participate in.)

Web Links

Check out the following as a starting point of additional information on tDCS, brain stimulation, and safety:

www.speakwisdom.com

www.diytdcs.com

www.speakwisdom.com/2013/10/31/diy-tdcs-code-of-safety/

www.haloneuro.com

www.caputron.com

www.foc.us

www.thebrainstimulator.net

www.thync.com

*transcranial direct current stimulation

 

Advertisements

Go Flow Pro, Nice Brain Stimulation Kit!

It’s no secret that I’m a bit of a fan of foc.us. The small London based DIY company has been on a serious innovation binge since they entered the market with the foc.us V1 – which was by far the most versatile tDCS* device in its time. Later foc.us released the V2 which is still one of the most capable brain stimulation devices on the market (not just tDCS.)  Late last year, foc.us introduced the Go Flow – a simple, very portable, tDCS device for a very low price. It has evolved into a complete kit that the company is calling the Go Flow Pro – it includes all you need to have a very capable tDCS device that is  simple to operate – and only $99 complete.

foc.us was kind enough to send me a pre-production Go Flow Pro and I thought you might like to see what it looks like. The final production kits (that should ship very shortly) may be slightly different (given production tweaks, marketing decisions, etc.)

IMG_3180
(Pre-production Go Flow Pro kit. tDCS device, battery, wires,stick-on and sponge electrodes, and headband. Not shown are the sponges – also included.)

IMG_3173
(Here is the Go Flow Pro on set up with my test head.  Note that the new magnetic attach wires and sponge electrode shell in use the with the foc.us headband. )

IMG_3174
(The new headband has several “button holes”. The electrode shells are place in the desired button holes for the montage desired. The magnetic wire sticks to the electrode shell and plugs into the Go Flow tDCS device.  Away you go!)

IMG_3177
(Here is the whole setup again showing the headband and cathode electrode attached to the shell – the anode is out of view. BTW the strap can go under the chin and over the head if needed. I can imagine some montages will require two straps.)

I’ll have much more to say about the Go Flow Pro and how it can be used to nudge the brain in desirable ways in my next post.  The Go Flow Pro can be purchase directly from http://www.foc.us or http://www.caputron.com Final production units should be shipping in May.

IMG_3205
(A foc.us sponge electrode – top – and a Caputron 2×2 sponge electrode – nearly identical sponge surface area.)

*tDCS is transcranial direct current stimulation. See my blog (www.speakwisdom.com) or http://www.diytdcs.com for more information.

 

Electrode Wars! (Well Not Quite)

IMG_3163

I’ve written a ton about all the great potential of brain stimulation and particularly tDCS. There are many studies and plenty of anecdote related to improving memory and creativity, reducing chronic pain, treating depression, etc. More about all of that later.

The National Center for Health Statistics just announced that the U.S. suicide rate has climbed to a 30-year high. This coupled with data that we have long had in hand – about 10% of the U.S. population is clinically depressed, that there are about 40,000 suicides in the U.S. every year, and that only about 20% of the people needing depression related treatment actually get it – tells you that our national mental health system is a failure.

tDCS* has emerged as a treatment method that is inexpensive, simple, safe, and has good effect for many of those who use it for depression related symptoms. tDCS use by professionals continues to grow and certainly the do-it-yourself (DIY) community is enthusiastic about it. tDCS requires placing electrodes on the head and passing a very tiny current between them in order to nudge the brain towards proper functioning (or enhancement.)

There are two popular kinds of electrodes, stick-on and sponge. Stick-on electrodes are simple and very useful when hair won’t get in the way. They are used once (or a few times for some) and discarded.  Sponge electrodes are preferred by most using tDCS as it can be used on skin or over hair, can be reused many times, and has a low cost per use.

Amrex has been the big dog in sponge electrodes for the tDCS world for a long time but competitors are emerging and I’d like to cover two of them here. First, Caputron (www.caputron.com) introduced a nice “clone” of the Amrex electrode some time ago and continues to offer it today.  It is available as a 3×3 (typical size used in tDCS) or 2×2 shell (about 2×2 and 1.1 x 1.1 sponge contact dimension). The Caputron electrode does have two distinct advantages – first they are more flexible and conform to curves of the skull more easily, and second they are much less expensive! A 3×3 electrode is only $12! They, like the Amrex electrodes have a banana jack for connection and a stainless steel screen behind the sponge for even current distribution. Also like Amrex electrodes, you can buy replacement sponges from Caputron (about $1 each) – or make your own from kitchen sponges.

IMG_3155
(The Caputron shell – orange – with the sponge removed. Note the stainless screen and banana jack. An Amrex shell is shown too – gray.)

Caputron also offers a nice, general purpose strap system that can be used with any brand of sponge electrodes. It’s called the Caputron Universal Strap System and is made of rubber (not latex). There are two independent straps that are marked with a centimeter scale that makes accurate placement of electrodes easy. The system is stretchy and very adjustable for position and head size. I really like this strap system and you will too – if you don’t mind the $75 price.

IMG_3161
(The Caputron Universal Strap on my much abused “test head”. The strap is versatile and easy to use.)

foc.us (famous for the foc.us V2 brain stimulation device and the new Go Flow tDCS device) is just releasing a new sponge electrode system  for the V2 and Go Flow that is very interesting! It consists of a rubber-like shell (about 2×2) and sponges that when inserted result in a 1.25 x 1.25 inch sponge contact area. To connect to the foc.us sponge electrodes, you need a special V2/Go Flow cable that attaches magnetically to the electrode shell. That means the problem of having an electrode jerked off of your head should you become tangled somehow goes away. This is a vastly better connection technology than the banana plug and socket used by many manufactures.

IMG_3146
(The new foc.us electrode shell and sponge. Note the magnetic ends on the wires for easy attachment to the electrode shells. A new production white Go Flow and 9 volt battery are also shown.)

foc.us is also releasing a companion head strap with strategically placed cutouts that allows easy and repeatable placement of the electrodes on your head. This new strap ships as part of the “Go Flow Pro” which includes the tDCS device, wires, strap, electrode shells (and sponges) and will be available for separate purchase too.

go-flow-pro-large
(The new electrode shells, strap, and Go Flow with battery. Note: some electrode setups may require two straps.)

All of the items mentioned in this blog post (including Amrex and foc.us) can be purchased from Caputron (www.caputron.com).  It’s great to have a dealer here in the U.S. that is carrying a huge variety of devices and accessories. I suggest you visit their web site and have a look.

There are many articles about tDCS available on my blog ( www.speakwisdom.com ) and via www.diytdcs.com .

*transcranial direct current stimulation

 

 

What Should I Buy If I’m New to tDCS?

 

++++ UPDATE AGAIN +++++ UPDATE AGAIN +++++ UPDATE AGAIN +++++

Great News! Caputron has just become a dealer for foc.us products. This means a US source for foc.us products (faster, less expensive shipping, support, etc.) See http://www.caputron.com/transcranial-electrical-stimulation/49-focus-go-flow-pro-tdcs-starter-kit.html

++++ UPDATE +++++ UPDATE +++++ UPDATE +++++

In mid-March of 2016, foc.us released a version of the Go Flow with sponge electrodes. This now becomes my “ideal” for someone new to tDCS. Sponge electrodes are very versatile and are reusable. The new “Go Flow Pro” includes the tDCS device, wire, sponge holders, sponges, and headband – all for $99 plus shipping (from London).

go-flow-pro-large
(The new Go Flow Pro. Image does not show connecting wire or sponges which are included.)

I’m leaving the rest of the post (below) in case you prefer stick-on electrodes or wish to make your own connecting cables.

+++++ FEB 2016 POST BELOW +++++ FEB 2016 POST BELOW +++++

In the last few years I’ve written plenty about tDCS (transcranial direct current stimulation), what it can do, various tDCS devices, etc. It’s been fun and gratifying to watch the whole “brain hacking” arena develop and grow – to the point that a good level of maturity has been obtained. Thousands of people have improved their lives in significant ways through tDCS – improving their learning/memory, easing depression and chronic pain, improving athletic ability, and much more.

I frequently get asked “what should I buy if I want to try tDCS?” The good news is that there are now plenty of good tDCS devices in the marketplace. A simple Google search for “tDCS device” will reveal many possible choices. If I were getting started in tDCS I would strongly consider the following (my opinion – yours may vary!):

  1. tDCS Device: My current favorite is the foc.us Go Flow ( http://www.foc.us/focus-go-flow-tdcs-brain-stimulator ) You can buy this cool little device for $39.99 plus shipping!  It is tiny (easy to carry in your shirt pocket), versatile, and does all the important things a tDCS device should do. The kit includes the tDCS device, connecting wire, stick-on electrodes, and a 9 volt battery.IMG_2912 (3)
  2. Adapter Cable: You will want a cable to adapt the Go Flow to standard tDCS cables. I would order ( http://www.foc.us/tdcs-tens-cable-adaptor ) It is $9.00 plus shipping (order at the same time you get the Go Flow to save on shipping.)
    cableadapter_2
  3. Electrodes: Most people do best using sponge electrodes. I prefer Amrex 3×3 electrodes.  They are available from many medical supply houses (Caputron Medical), Amazon, and more. They cost around $20 each and you will need two. The sponge can be easily replaced with a cut kitchen sponge when necessary.
  4. You will need a cable to connect the electrodes to the Go Flow and its adapter cable.  I suggest ( http://www.bluemoonhealth.com/tens_supplies_pages/banana_wires.htm ) It’s $6.95 plus shipping. There are other suppliers if you prefer.
  5. Last, you will need a simple headband to hold the electrodes in place for your tDCS sessions.  Almost any headband will do.  It needs to hold the electrodes firmly, but not so tight as to be uncomfortable.  I use Suddora Athletic Headbands – available from Amazon and others for about $6.00
    51j+CDVPtBL._SL1000_

Conclusion

So what does it all add up to? You will spend a little over $100 to buy all of the above (and pay shipping). This is a very reasonable cost when compared to that of long term medication use or the price of fancier brain hacking devices.  I use the exact setup shown above (as do some of my friends) and find it simple and convenient.

Again, you may prefer a different brand or type of tDCS device. See my blog or do some Google searching for information on other tDCS devices in this same price category.

If you think you might want something really sophisticated, consider the foc.us V2 . I think it represents the “state of the art” in DIY brain hacking capabilities. It costs considerably more ( $299 for the V2 module ), but can be used with the cables and electrodes mentioned above.

For more information on tDCS and brain hacking, see:

http://www.speakwisdom.com
http://www.diytdcs.com
reddit.com/r/tDCS/

You should also look at:

http://www.tdcsplacements.com
speakwisdom.wordpress.com/2013/10/31/diy-tdcs-code-of-safety/

 

 

 

Solid Advice on Selecting foc.us V2 Device and Accessories

Introduction

Foc.us, the London based small business that keeps innovating in the DIY tDCS* and brain stimulation space now has a number of products in their line.  Some people are confused about which parts and pieces to buy in order to have the right stuff to move ahead with a tDCS treatment (or other) program.  I thought I could help a little with this blog post.

The V2 Brain Stimulation Device

First, you will need a foc.us V2 stimulator device. The device currently sells for about $199 and with current firmware is far beyond any of the competition in terms of versatility, capability, portability, etc. I won’t take time here to list all of the MANY things the V2 can do, but suffice it to say that manufacturers of “professional grade” tDCS, tACS, etc. equipment are probably nervous about where foc.us is driving prices and capabilities! In my opinion, the V2 is THE brain stimulation device to buy at its price point.

Note: Though the V2 can be controlled via an IOS or Android device, it’s not really necessary. The V2 on-screen display and joystick will quickly and easily let you access V2 setup and features.

IMG_1530
(The foc.us V2. In my opinion, a great brain stimulation device.)

Electrodes

Next, you need electrodes. Foc.us offers FOUR different electrode options for you to choose from:

Option 1: The Gamer Headset.

IMG_1574
(The Gamer headset with sponges removed. Sponge holders can be separated from the metal band for added versatility.)

This is probably the best choice for most stimulation (tDCS) situations. It consists of two sponge electrodes mounted on a flexible band. The electrode “holders” can bend inward to place the electrodes properly on the forehead. HOWEVER, I find it best to remove the electrode holders from the band and use an elastic headband to position the electrode sponges as desired.  The Gamer headset does NOT restrict electrode placement – you just need to add your own elastic band.

IMG_1570
(Look closely at this pic and you will see the Gamer electrode holders have been removed from the included metal band. Instead they are placed on my test head using an elastic band – in this case for the savant montage.)

Option 2: The EDGE Headset.

This option should ONLY be selected IF you are interested in researching brain stimulation and its possible impact of athletic performance. This is a special-purpose (not general purpose) headset. The electrode placements are unusual and will not address the needs of most tDCS users.

img_1556
(The EDGE headset showing the main electrode at the top and the secondary electrode that would be attached to the upper arm at the bottom. This is a special purpose brain stimulation headset.)

Option 3: Moovs Stick-on Gel Electrodes

This is a new option from foc.us. It is a pair of electrodes that adhere to open areas of skin (NOT HAIR or through hair.) Because of this, they are a bit limited in terms of where they can be placed. They are light and very comfortable – and do stick to skin well. But if part of your treatment montage involves placing electrodes over hair – you should select the GAMER sponge headset (or option 4 below) instead. Remember, the Gamer electrodes can be placed anywhere with an elastic band.

150721-moovs
(The Moovs stick-on electrodes. Image from the foc.us website.)

Option 4: Your Own Electrodes

I and many other brain stimulation researchers and testers have been very pleased with the line of sponge electrodes from Amrex. Most of us use the 3×3 Amrex, but sometimes the smaller 2×2 is useful.  The Amrex sponge electrodes are not cheap, but they are built to last. Foc.us to their credit makes it EASY to use your own electrodes, whatever you prefer, via a simple adapter cable (about $10 from foc.us). The cable allows you to plug in “TENS” compatible connecting wires, including those that have banana plugs for the Amrex electrodes. You can buy electrodes, wires, and more at almost any medical supply house – and via Amazon!

amrex3x3
(The Amrex 3×3 is shown. It consists of a rubber shell, stainless wire screen, and a sponge. Connection is via a banana plug to a jack at the top of the electrode.)

Summary

The foc.us V2 represents the best capability I am aware of for DIY tDCS (and brain stimulation) users. Yes, there are many less expensive devices (tDCS) in the market and they are appropriate for those on limited budgets, just starting out with tDCS, etc. But if you want the most capability for your future brain stimulation needs, I don’t know of a better product in the market right now. Remember, you will need a foc.us V2 and electrodes.  If you buy it all from foc.us you will spend around $300.  If you choose to use your own electrodes (and connecting wires), you can spend a little less (total.)

Caveat

As I have mentioned, foc.us is a SMALL company based in London doing incredibly innovative work in the field of brain stimulation technology – with a focus (pardon the pun) on the DIY marketplace (not the multi-million dollar grant driven labs.) I believe they have become somewhat overwhelmed by their own success. So YOU may encounter slow service on any special request you make of foc.us (tech support, returns, etc.)  Be prepared to be patient. The foc.us web site also is overly complicated by its attempts to be trendy. I suggest you hit the “All Products” link at the top left as a starting point.

By the way, foc.us will not diagnose or prescribe treatment for you – so don’t be upset if they ignore such requests. Do your homework on tDCS (brain stimulation), become informed, and make your own carefully considered decisions about brain stimulation and its appropriateness for your situation.

See the following for more information on tDCS:

www.speakwisdom.com

www.diytdcs.com

www.reddit.com/r/tdcs

www.transcranialbrainstimulation.com

*tDCS is transcranial direct current stimulation

Time to Take Another Look At foc.us tDCS and more

History

About two years ago foc.us burst on the do-it-yourself tDCS scene with a headset marketed to “gamers” – claiming to offer improved game performance (higher scores).  A few folks like myself recognized the foc.us headset (V1) for what it was – a remarkable, capable tDCS device that could be used for ANY tDCS related purpose including treating depression, chronic pain, enhancing memory, etc. – and yes, improving game scores!  The V1 headset was truly a leap beyond anything else available to the DIY community offering an all-in-one headset that could be controlled via Bluetooth, offered built-on and external electrodes, all in a very nicely designed package.

focus-gaming-tdcs-headset-7
(Famous or infamous foc.us V1 ad campaign)

Critics quickly emerged, as they often do, describing customer relations related problems with foc.us – many justified, and technical issues with the product – many unjustified.  It seemed foc.us was surprised by their own success and unprepared for the order volume and normal support requirements of such a leading edge product. By the time foc.us got its organizational problems resolved, the V1 was winding down and the company was preparing to launch the V2.

The foc.us V2

Several months ago, Transcranial Ltd. launched it’s new foc.us tDCS product, the V2. It, like the V1, sets a  high bar for the DIY tDCS market. In a tiny package easily small enough to misplace with your car-keys, foc.us engineers included all of the technical features of the V1, plus the added versatility of upgradeable firmware (new features), display screen with scrollable selection, redesigned and industry leading headsets, the ability to use 3rd party headsets and related accessories, and more!

IMG_1530
(The foc.us V2. Tiny! Awesome!)

Interestingly, foc.us via their advertising, now seems to recognize the value of their technology for what it is, a real cranial stimulation device – not just for gamers – but for anyone seeking the benefits of tDCS and more.

images
(
The V2 ad campaign is more general – making clearer the broad capabilities of the V2.)

Since my initial posting about the V2 (see http://bit.ly/1Jilfpg ) Transcranial Ltd. has upgraded the feature set of the V2 in significant ways!  The V2 now supports tDCS, tACS, tPCS, and tRNS as well an upgraded application for Android devices and soon iOS. The V2 can no longer be referred to as just a tDCS device – it’s now a fully capable, research grade, cranial stimulation device!

It’s a Software World Now!

If you purchase a V2 (or own one now), you may wish to update its firmware periodically to take advantage of new features.  Here are some key steps:

  1. Go to the foc.us web site and create an account: https://www.foc.us/customer/account/login/
  2. Log in with the account
  3. Connect your V2 doc to your capable PC (or Mac)
  4. On the left of your screen (once logged in), select “My Downloadable Products”
  5. Click the “Microsoft Software” (or Mac) download button and install
  6. Run the installed application and allow it to check and upgrade your V2 to the latest firmware

Apps

An Android app is available (search for wave tdcs in the store.) An iOS app for the V2 is due anytime (the old V1 app does not seem to work with the current V2 firmware.) I will say that the on-screen display of the foc.us V2 is so good and so versatile that I’m not convinced that the apps currently add much value. Transcranial Ltd. is soon to release a EEG capability called “Quantum” that will apparently link to the V2 – and will probably make the apps very functional and important to use.

unnamed
(foc.us Android app)

Anyway, you must pair the foc.us device to your Android or iOS device to use an app. Here are normal pairing procedures:

  1. Make sure Bluetooth is turned on on your Android or iOS device
  2. Turn on the foc.us V2 and scroll to Settings, Bluetooth, and make sure Bluetooth is On.
  3. Very quickly your handheld device should find the foc.us device and request you type in a code number that you will find displayed on the foc.us device. Do that and you are ready to go!
  4. Run the foc.us app, set the desired mode (tDCS, etc.), max voltage (20 is typically fine), current (1 to 2 mA), time (typically 20-25 minutes), sham should be off, and START

I’ve noticed that the Android app does not display remaining session time.  You can see it easily on the foc.us device by tapping the blue joystick.

More Detailed Instructions?

Like most tDCS vendors, Transcranial Ltd. is trying to stay off of the FDA’s radar by making it clear that they are not producing a medical device – so they shy away from writing application guides and notes. This frustrates some. Users are left to their own creativity to learn how to properly use and get full advantage from a foc.us device (V1 or V2). To help V1 headset users, I wrote a pretty detailed set of instructions ( see http://bit.ly/1FSf6wb ) that seem to be popular.  Would you like an equally detailed set of instructions for the V2? Let me know – if there is sufficient interest I’ll be happy to put that together.

Finally, I’ve taken a good bit of heat via email and blogs for being a fan of foc.us. Unlike some, I saw very early on that their unique product(s), if used correctly, could be used to improve the lives of many – and that has turned out to be true. Foc.us continues to be one of my favorites in the world of tDCS and cranial stimulation and I, for one, anxiously await their next DIY leading-edge products and the pace they set for the industry.

I look forward to your comments and questions.

Brent

brent@speakwisdom.com

Notes:
1. Photos in this blog are from the internet and include images from foc.us and speakwisdom
2. If you are new to tDCS, please read and study carefully before taking any action related to tDCS or any cranial stimulation technology.  I suggest as a starting point:
a. speakwisdom.wordpress.com/tdcs/
b. diytdcs.com
c. www.reddit.com/r/tdcs
d. http://www.pubmed.gov (search for tDCS)

Summer is Here! Time for The Brain Stimulator Travel Model!

Travel Model Advanced 2x2 Kit - Unplugged_NEW
(The Brain Stimulator Travel Model shown with available electrodes, wires, and headband. The tDCS module itself is very small and easy to transport.)

I am a longtime fan and proponent of tDCS.  There is plenty of evidence that this simple, safe, technology can be used to reduce or eliminate depression, treat chronic pain (including migraine headaches), enhance memory and learning, and more!  If you are new to tDCS, take a look at the index of tDCS articles I’ve posted at https://speakwisdom.wordpress.com/tdcs/

If you are looking for a high quality tDCS device that also happens to be ideal for summer travel, you should consider “The Brain Stimulator Travel Model”.  This is a well-built, basic, tDCS device that can deliver 1 or 2 mA with the flick of a switch and can stand-up to being repeatedly tossed into a suit-case or travel bag, jostled around, and still come out ready to go and deliver a reliable tDCS session.  Depending on the configuration you buy, it can cost as little as $55 – or a bit more with high quality electrodes and other accessories.

The Brain Stimulator Travel Model also makes an excellent first tDCS device or a supplemental device if you already own something more sophisticated.  It is built by JD Leadam and his team at Neurolectrics – real pioneers in the DIY tDCS marketplace.

 

IMG_1692
(The packaging of the devices is simple, neat, and able to withstand travel related abuse.)

Neurolectics used a tried and true design built around a current regulator and a 9 volt battery. It’s simple, safe, and reliable – but because a 9 volt battery is used as its energy source, it is very important that sponge-electrodes be used and that they be well wetted with a saline solution in order to assure delivery of 1 or 2 mA (depending on switch setting).

I always prefer that a DIY tDCS device have some monitoring capability (digital or analog meter) to assure that the desired current level is being delivered. Neurolectrics chose not to take that path with this device – I assume to keep cost at a minimum and the package as small as possible.  If you are a frequent tDCS user, I’d suggest changing the 9 volt battery every couple of months – and again – be sure to use well wetted sponge electrodes to help assure you receive the selected stimulation level.

IMG_1690
(Neurolectrics places all significant components on a nicely manufactured PC board. This limits point-to-point wiring and makes for a more reliable device – important for a travel device.)

The Brain Stimulator Travel Model could not be easier to use!  Simply wet the electrode sponges, place the electrodes as desired with a headband, flip the switch to 1 or 2 mA, and begin timing your tDCS session (20 to 25 minutes is typical.) When done, switch off the device, take off and stow the electrodes and you are done.  If you really are traveling with the device, I suggest you remove the sponges from the electrode shells and place them in a small water-tight container.  You should also wash them frequently with good soap and plenty of water to prevent anything undesirable from growing in them!

I’ve taken several trips (including through airports and airport security) with the The Brain Stimulator Travel Model and found it to be quite handy for personal use and for demonstrating tDCS as seminars.  Don’t expect any flashing lights or fancy meter with this unit.  It’s basic tDCS – and it works.

Visit the Neurolectics website at https://thebrainstimulator.net/

I welcome your comments and questions.

Brent

 

 

Interview: JD Leadam, Neurolectrics

Here’s a chance to meet the founder and CEO of Neurolectrics – the creator of the BrainStimulator and the BrainStimulator Travel Model.  JD is a true pioneer in the DIY tDCS field and I hope you will find this podcast to be interesting and informative.

Click HERE to listen or download the mp3.  Total length is about 27 minutes, 12.5 MB

JD’s web site is HERE

Enjoy!

Travel Model Advanced 2x2 Kit - Unplugged_NEW

Using the foc.us V2 with the Gamer or Your Own Electrodes

Introduction

In part 1 of my series on the new foc.us V2 tDCS device, I introduced the basic components of the V2 as well as its user interface. I continue to be pleased with the V2 as a user and want to pass along some ideas related to electrode use.

The foc.us Gamer Headset

Foc.us offers two headsets for the V2, the Edge and the Gamer. The EDGE is a special purpose headset designed to facilitate experimentation and research on the use of tDCS to improve athletic ability. As I mentioned in the last post, this is an area of tDCS that is ripe for exploration. A few studies have already been posted that hint at possible uses for tDCS and improvements in physical ability. This will be a very interesting application of tDCS to watch as results from various tests are posted. The EDGE headset is not a general-purpose tDCS headset and should NOT be selected by most users.

The GAMER headset is a more versatile headset for the new or experienced tDCS user. It is made up of a flexible metal band and two electrodes that attach to the band. It is highly adjustable for head-size and comfort. “Out of the box” it is designed to allow stimulation of the pre-frontal cortex, an area associated with memory, learning, etc. It happens that the electrodes of the GAMER can be used independent of the included band – allowing electrode positioning for “savant learning”, treatment of chronic pain, depression, etc. Note: the electrode plainly marked “Left” on the inside of the sponge frame is the anode (+) and the electrode marked “Right” is the cathode (-).

IMG_1574
(The Gamer headset.  Best choice for most.)

IMG_1560
(The Gamer headset in its case.)

 

IMG_1564
(The Gamer on my “test head”. Note electrodes are positions over the pre-frontal area.)

IMG_1570
(You can use the Gamer electrodes without the supplied metal band and place them where you want. Here I’ve used an elastic band to position the electrodes for “savant learning”.)

IMG_1573
(Here is another example with the electrodes positioned to treat chronic pain. In this example, the cathode would be placed on the upper arm or shoulder with another band.)

UPDATE – March 2015

foc.us has updated the firmware on the V2 so that the resistor that tells the tDCS module which headset is connected is no longer needed.  FURTHER – they are also released a patch cable to make attaching 3rd party electrodes even easier. See (  http://www.foc.us/tdcs-tens-cable-adaptor ).  The text below is left for historical reference only.

Using Your Own Electrodes (Amrex)

If you are pretty good with a soldering iron you can easily adapt any electrodes you prefer for use with the foc.us V2. The jack on the V2 tDCS device is a four conductor, 2.5 mm type that has been used on some cell-phones and portable audio gear. Connect your electrodes to a four conductor, 2.5 mm plug and a small resistor and away you go!

Plug Wiring

Tip and Ring 1 – a resistor across these two tells the tDCS device the model of headset connected. (300 ohms for the Edge, and 2,000 ohms for the Gamer by my measurements)
Ring 2 – Cathode connection (-)
Ring 3 – Anode connection (+)

To test this, I used a small RadioShack proto-board and broke out the 4 conductors for easy investigation and tinkering. I used a 100 and 200 ohm resistor in series to get the 300 ohms needed to let the V2 “think” I am connecting an Edge headset, even though I use popular Amrex 3x3s. Actually it seems not to matter whether the V2 thinks an Edge or Gamer is connected – you can still set all the desired tDCS treatment times and current levels.

IMG_1549
(Note the four conductor plug. It is broken out on the proto-board with T, 1, 2, 3 as described above. I use this example with Amrex 3×3 electrodes.)

Perhaps in future firmware, foc.us will include special features for 3rd party headsets that use a different resistance identifier.
BTW Soldering wires to a four conductor, 2.5 mm plug is not for the faint of heart. It’s very easy to short contacts and generally make a mess. I suggest buying a pre-wired 2.5 mm plug from Parts Express (or similar). Their part number is 090-504.

Summary

So there you have it. I suggest that you either buy the foc.us GAMER headset with your V2 and use it as is or with your own headband as I have shown above – or do your own thing with a 4 conductor plug and whatever electrodes you prefer.

Please feel free to send along comments and suggestions related to this post or a future one you would like to see.

The NEW foc.us V2 tDCS Device and Headsets, Part 1

IMG_1530
(The tiny V2 module is now the core of the foc.us tDCS product line.)

Introduction

Once again, foc.us has distanced itself from the rest of the tDCS device pack. If you are in the market for an innovative tDCS device that is sophisticated and simple to use, I think you will be very pleased with the foc.us V2. tDCS is all about delivering a tiny current to the brain in order to improve it or provide relief from a brain-related condition. Here is a way to do it with a cool device that works well!

Enter foc.us

The first foc.us headset moved the bar on tDCS devices by offering a huge feature set (built-on or external electrodes, wearable, Bluetooth support, iOS app, etc.), and a moderate price. I don’t have any sales data on the foc.us V1 headset, but I’ll guess foc.us sold more than a few.  I happen to own more than one and use them often. I’ve also helped many others achieve tDCS success with the foc.us v1.

IMG_4664
(The foc.us V1. Slick. Innovative.)

As a radically new design from a brand-new start-up, the foc.us V1 was not without its problems or detractors. There were production problems, support problems, unpolished features and more – that for some made it hard to see the real core value of the headset as a tDCS treatment device. But given how far foc.us pushed the DIY tDCS market, those of us who really learned how to use the headset were (and are) thrilled to have it.

The foc.us V2

foc.us did not stand still though. Based on experience with the v1, user input, and their own vision of what tDCS could become, the foc.us v2 tDCS device and accessories have been created and are now moving toward distribution.  The new device has three basic parts of which the buyer can purchase as desired.

  1. foc.us V2 tDCS Device – REQUIRED (does the work of producing the tiny DC current used in tDCS.)
  2. Gamer Headset (plugs into the V2 device. Electrodes positioned for stimulating certain types of learning)
  3. EDGE Headset (Plugs into the V2 device. Electrodes positioned to possibly enhance athletic performance.)

The V2 tDCS device itself is now a tiny module not much bigger than some USB flash-keys.  It is programmable, has a graphical display, a joy-stick like control for selection of desired tDCS parameters, and is rechargeable and updateable (firmware) via a USB base.

IMG_1512
(As expected from foc.us, innovative design and nice packaging.)

The Gamer headset is a flexible band with two electrodes designed to reach the pre-frontal cortex area of the brain – an area thought to respond nicely to tDCS for improvement in some types of thinking and learning (concentration, planning, judgment, etc.)

IMG_1564
(The new foc.us Gamer headset. Bigger sponges, very comfortable. Shown on my “test head”. There are better photos at www.foc.us)

The EDGE headset represents new ground for a commercial tDCS device.  Many of us have wondered how long it would take the world of athletics to discover tDCS and the potential it holds for improving performance in many competitive and non-competitive sports.  To that end, foc.us offers the EDGE headset designed to place the anode in the area of the premotor cortex (coordinates complex movements) and the cathode on the upper arm.  Much research and experimentation in this realm of tDCS is needed, but suffice it to say that one day the top performers on your favorite sports team may be using tDCS during at least some of their training.

IMG_1556
(foc.us calls attention to the possibilities for athletic improvements via tDCS and the EDGE headset. Shown on my test head. Foc.us headset sponge-sockets are now nickel plated – instead of copper as in the v1. Better images are at www.foc.us)

Operation

I was fortunate enough to have received a foc.us V2 at the beginning of December, 2014, with an early firmware and feature set. Suffice it to say that, even in its early form, it performs well and is very easy to use.

Using the V2 is simple: Unpack the V2 tDCS device and place it on the USB charger for an hour or two to fully charge. Meanwhile, remove two sponges from the sealed envelope supplied with your foc.us headset, wet them a bit (saline if you prefer), and place them in the sponge sockets (or use your own electrodes and headband as described in the next blog post.)

With the headset in place and plugged into the V2 device, press the blue joystick on the v2 tDCS device to activate it.  Then simply step through the prompts to setup your tDCS session parameters.

IMG_1545
(The display is easy to read. Duration and current are easily changed.)

Your tDCS session will begin with a short ramp-up time and then a count-down of the session time remaining. Actual current delivered is displayed and graphed.  You can press on the joystick at any time to immediately end a session.

IMG_1544
(Prompts are simple and clear.)

For you techie folks: Note that the foc.us V2 does contain a boost circuit to overcome electrode and skin resistance – as do many commercial tDCS devices.  I measured a peak of 56 volts as the V2 tried to compensate for my high-impedance load test and deliver the selected current level.  At no time was I ever able to exceed the current level I had programmed on the V2 device.

A Few of the Many Enhancements Over the foc.us V1

  1. Very small, portable, tDCS device. You could easily Velcro it into your cap or just put it in your pocket. It is easily programmed for desired tDCS settings.
  2. foc.us electrode sponges are much larger (and better quality) than with the v1 for better current distribution
  3. More comfortable headsets
  4. Can be used with foc.us, 3rd party, or user provided headsets and electrodes

Concerns

  1. Three or four tDCS sessions seems sufficient to drain the battery in the early production device. I think it will be a good habit to put the V2 device on its charger when not in use.
  2. There were complaints that foc.us seemed overwhelmed when the v1 was released about two years ago – leading to spotty technical support and order-issue resolution problems. Has foc.us learned from the V1 experience?
  3. The V1 IOS app never seemed to reach a solid feature completion. It works – but… Will the V2 app be better? foc.us says it will.  They have a new programming team and will release a new app for the V1 and V2 in the January/February timeframe.  But to be clear, you DO NOT need an app to use the V2 very effectively.

Overall Impressions

I’m very pleased with my early copy of the V2.  It works well, is tiny, easy to use, and produces clean, predictable output.  The new foc.us headsets are innovative and comfortable. The V2 represents a nice step forward for foc.us and for the DIY tDCS community. I look forward to continued development of the V2, firmware, apps, and 3rd party add-ons that are likely to come.

Pricing

Pricing is about the same as with the V1 (it was about $250 plus $50 for a needed accessory kit.) The V2 is $199 for the tDCS module. foc.us supplied headsets are priced at $99.  A pack of 12 foc.us sponges is $5. You are free to use 3rd party or your own electrodes if you prefer (details in my next post.) See www.foc.us for ordering details.

Bottom Line

The foc.us V2 is clearly more sophisticated and better designed than the typical tDCS device in the market right now.  Yes, it costs more than entry-level devices – but as the saying goes, “you get what you pay for”.  If you are serious about tDCS for yourself or someone you know, the foc.us V2 deserves your consideration.

Brent Williams, PhD
http://www.speakwisdom.com

Coming at www.speakwisdom.com

Over the next weeks and months, I’ll post a number of articles about the foc.us V2, use, applications, and more.  Feel free to contact me with your questions and comments via brent@speakwisdom.com

IMG_1549
(My crude but effective breakout of the new V2 four conductor plug. Yes, you can use Amrex and other electrodes.)